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Introduction

For the start, let’s first explain what semi-streming model means and what is graph sparsification. After
that we will see some application of graph sparsification and why is it important.

Semi-stremining model. The title of the paper is “Graph Sparsification in the Semi-streaming
Model”. First, we should note that it says semi-streaming and not streaming. In graph problems
there is a linear space lower bound for even the simple problems such as determining the connectedness
of a graph. In other words, we have to store at least all vertices of the graph. Because of that, this
paper uses semi-streaming model, which means that we can store all vertices in memory, but we don’t
have enough memory to store all edges. Also, we are given edges one by one in arbitrary (and possibly
adversarial) order. If we take a look at social network for example, the number of vertices (people) could
be significantly lower than the number of edges in that graph, which means this model has a practical
application.

Cut. In a graph G(V,E), a cut is a partition of the vertices of a graph into two disjoint subsets. Any
cut determines a cut-set, the set of edges that have one endpoint in each subset of the partition. We can
represent a cut by two sets A and B, where A,B ⊂ V,A∪B = V and A∩B = ∅, and a cut-set contains
those edges that have one endpoint in A and other one in B. Value of the cut is a sum of weights of
edges in cut-set. If the graph is unweighted, we assume that every edge has a weight 1. Throughout the
paper, authors use different representation of a cut. The cut can be given by cut-set. In other word,
by the set of edges that are in a cut-set. For a value of a cut C in a graph G we will use a notation
V AL(C,G). In the image below, a cut-set is given by green edges (weights of edges are in parenthesis)
so we have a cut C = {e1, e4, e6} and V AL(C,G) = 4.
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Sparsification. Let’s take a look at two graphs in the image below.
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What could we say about those graphs? Let’s denote graph on the left side with G and graph on the
right side with H. Graphs have same number of vertices, but H has less edges. Note that if you take
any cut, value of that cut in G will be equal to the value of cut in H. This is idea behind sparsification.
We want to sparsify graph in such a way that number of edges in a new graph is significantly less than
in original graph, but keeping values of every cut inside some interval around value in original graph.

Definition 1. H is a sparsification of a graph G if and only if for every cut C it holds (1−ε)V AL(C,G) ≤
V AL(C,H) ≤ (1 + ε)V AL(C,G). If H is a sparsification of a graph G we write that as H ∈ (1± ε)G.

Goal. Our goal is to build an one pass algorithm, since we can’t store all edges, which gives sparsification
of the input graph. One pass algorithm means we don’t have to go multiple times though streming data.

Natural question arises, why do we need this? Many useful algorithms are based on values of a cut, and
one of the most popular is max flow algorithm. Also we can check connectivity of the graph with cuts.
One more example involving huge graphs is image segmentation using graph cuts, where in one version
of it we connect every pair of pixels with weighted edge and then use max flow - min cut to figure out
what pixels are in the background and what is foreground.

Another question is why do we need such an algorithm in semi-streaming model. This paper was
published in 2009 and before that we already knew quite many algorithms that produce sparsification of
a given graph. All those other algorithms have to keep all edges in memory which isn’t possible in some
cases such as mentioned image segmentation. The ability of the algorithm to retain the most relevant
information in main memory has been deemed critical.

Algorithms

Let’s start with the simple algorithm.

Simple algorithm. We are given graph G and we build sparsified graph H. Add every edge from G in
H with probability p and assign that edge a weight 1/p (with probability (1−p) we don’t add that edge to
H). Now, consider any cut C = {ei1 , ei2 , · · · , eil} in G. Let’s denote set {i1, i2, · · · , il} with S. Value of
cut C in G is the number of edges in the cut-set, i.e. V AL(C,G) = |C| = l. Let’s compute expected value
of the same cut in H. For every edge ej in C, j ∈ S, let’s denote with Wej

random variable that denotes
weight of edge ej in graph H. Now, for every edge ej we have expected weight E[Wej

] = p · 1/p = 1.
Now using linearity of expectation we have E[V AL(C,H)] = E[

∑
j∈SWej ] =

∑
j∈S E[Wej ] = l.

We have proved that in expectation every cut in H will have the same value as in G. Idea of this
algorithm is clever, but in order to get sparsification it is not enough just to have same value of every
cut in expectation. We have to get a result where with high probability value of every cut is around its
expectation and also we have to get significantly less edges in sparsification graph.

In the paper [3] we can find theorem which is stronger then the one we will give now, but for our use
we don’t need so strong theorem.
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Theorem 1. Let G have minimum cut c. Build G′ by including every edge of G with probability p and
give it some weight. With high probability, every cut in G′ is approximated around its expected value with
factor (1± ε), where ε = Θ(

√
logn/pc).

From here we can easily get following lemma.

Lemma 1. Let G have minimum cut c. Build G′ by including every edge of G with probability p >
Θ(logn/ε2c) and give it a weight 1/p, then with high probability every cut in G′ is approximation of the
same cut in G with factor (1± ε).

Since p� 1/c and number of edges is around its expactation m · p with very high probability (Chernoff)
we can see that in worst case when c is small we get only constant improvement in number of edges.
Also in streaming model we can’t know value of minimum cut in advance.

Previous lemma is intuitive. If our graph is a path, minimum cut is 1 and we have to keep all edges,
since sparsified graph has to be connected also. On the other side, if our graph is clique, minimum cut
is n and we probably don’t need every edge.

What this algorithm misses is the case when we have both, path and large clique. Minimum cut of the
graph is 1, but we can divide it into 2 subgraphs and sparsify clique.

Based on previous example, we have to come up with a new way to sample different parts of a graph.
The probability of sampling an edge should depend on the part of the graph around that edge.

Now, we will try to decompose our graph in parts where we could use our previous lemma in every part
individualy. Let’s define that local value for each edge.

Definition 2. A graph is k-strong connected if and only if every cut in the graph has value at least
k. k-strong connected component is a maximal node-induced subgraph which is k-strong connected.
The strong connectivity of an edge e is the maximum k such that there exists a k-strong connected
component that contains e. We will denote strong connectivity of an edge e in a graph G with cGe .

We should note that strong connectivity is not the same as connectivity. Let’s take a look at graphs in
a figure below.

1

2 3 4

5

Edge (1, 5) has (standard) connectivity 4, but it is only 2-strong connected because every subgraph that
contains edge (1, 5) have a cut with value 1 or 2. The main difference is that in (standard) connectivity
we have to disconnect specific pair of vertices, while in strong connectivity we can disconent any pair of
vertices.

Looking back at our example with path and clique we can see that strong connectivity for edges on the
path is 1, but for edges in the clique is equal to the number of edges in the clique.

Now we will give an algorithm from paper [2] which uses k-strong connectivity of each edge.
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Non-streaming algorithm. Below is the code of the algorithm that solves the problem with number
of edges and outputs sparsified graph.

Algorithm 1 Benczur-Karger
Require: Graph G = (V,E)
Ensure: Sparsified graph H

1: compute the strong connectivity of edge cGe for all e ∈ G
2: H = (V, ∅)
3: for e in E do
4: pe = min{ρ/ce, 1}
5: with probability pe, add e to H with weight 1/pe
6: end for
7: return H

At first sight, this algorithms seems random. But let ρ = Θ(logn/ε2). Now, we can see a relationship
between ρ/ce = Θ(logn/ε2ce) and p = Θ(logn/ε2c) from lemma 1. If we would have a component where
every edge have same ce we could use lemma, because in that case we know that ce is a minimum cut
for that component.

What this algorithm does is that it decomposites a graph into components where for each component
we know what is a minimum cut and we can use lemma 1. After that we can use union bound to get
error bound for a whole graph.

In paper from Benczur and Karger [2] they proved following two theorems for mentioned algorithm.

Theorem 2. Given ε and a corresponding ρ = Θ(lnn/ε2), every cut in H has value (1 ± ε) times its
value in G with high probability.

Theorem 3. With high probability H has O(n logn/ε2).

To quickly compute strong connectivity for an edge is an open problem, but Benczur and Karger in the
paper use good lower bound c̃Ge ≤ cGe and proof still holds.

The problem with this algorithm is that it computes strong connectivities for each edge given G before
building H and in semi-streaming model we have to build H while receiving edges from G. We will use
very similar algorithm as last one, but instead of computing strong connectivity of every edge using G
before building H, we will compute strong connectivity of an edge when we receive it, using graph H.

Semi-streaming Algorithm. Below is the code for algorithm from the paper.

Algorithm 2 Semi-stream sparsification
Require: Graph G = (V,E)
Ensure: Sparsified graph H

1: H = (V, ∅)
2: for e in E do
3: compute the connectivity ce of e in H
4: pe = min{ρ/ce, 1}
5: with probability pe, add e to H with weight 1/pe
6: end for
7: return H

Even though last two algorithms are very similar, analysing last one is more complicated because of
dependences that now arise because we compute connectivity in graph H and graph H is build on the
fly.

In the paper two main theorems are proved. First one is about proving that H is a sparsification of G
after running the algorithm from above and the second theorem is about number of edges in H after
running the algorithm.

Theorem 4. Given ε > 0, H is a sparsification, that is H ∈ (1± ε)G, with high probability.
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Theorem 5. If H ∈ (1± ε)G, H has Õ(n/ε2) edges.

Proof of Theorem 4

We will give only brief description of the proof. First we decomposite a graph in k-strongly connected
components. After doing so, in each component we know what is the minimum cut (k) and we know
how many possible cuts are there. For every cut we have a theorem which computes an error with high
probability so we can use union bound and sum over all cuts in k-strongly connected component. After
doing so for each component we can use union bound once more to prove sparsification.

Only for the sake of completeness of a report we will state the part of the proof where graph is decom-
posesited.

Error Bound for Hi and H

Lemma 2. The probability of i being the first integer such that Hi /∈ (1± ε)Gi is O(1/ndm).

In order to prove this lemma we need some additional definitions. Let Gi be a graph G after receiving
first i edges. Also let Gi,j = {e : e ∈ Gi, 2j−1 ≤ c(Gi)

e < 2j}. Each edge in Gi,j has weight 1.

Also we introduce Fi,j =
∑
k≥j 2j−kGi,k. As we can see from the formula, Fi,j is composed of 2j−1-

strongly connected components, because we divide weight with corresponding number.

With those definitions, we can now give a proof.

Proof. If Hj ∈ (1± ε)Gj for all j < i, cej
≤ (1 + ε)c(Gi)

ej . Let’s now decompose Hi into components.

Hi =
∞∑

j=−∞
Hi,j

=
∞∑

j=−∞
(Hi,j + 1

2Fi,j+1)−
∞∑

j=−∞

1
2Fi,j+1

Now we will prove that Hi,j + 1
2Fi,j+1 is a sparsification of Gi,j + 1

2Fi,j+1 = Fi,j .

As said before, Fi,j consists of 2j−1-strong connected componentes. For every e ∈ Gi,j , c(Gi)
e < 2j . So it

is sampled with probability at least p = ρ/(1+ε)2j . If we consider one 2j−1-strong connected component
and set ρ = 32((4+d) lnn+lnm)(1+ε)/ε2, by lemma for k-strongly connected components we have that
every cut has error bound ε/2 with probablility at least 1 − O(1/n2+dm). Since there are less than n2

such distrinct strong connected components (number of edges), with probability at least 1−O(1/ndm)
it holds Hi,j + (1/2)Fi,j+1 ∈ (1± ε)Fi,j for every i, j. Hence,

Hi ∈
∞∑

j=−∞
(1± ε/2)Fi,j −

∞∑
j=−∞

1
2Fi,j+1

⊆ (2± ε)Gi −Gi
= (1± ε)Gi

Therefore, Pr[(∀j < i,Hj ∈ (1± ε)Gj) ∧ (Hi /∈ (1± ε)Gi)] = O(1/ndm).

Now we can use union bound to finish the proof of the theorem Pr[H /∈ (1 ± ε)G] ≤
∑m
i=1 Pr[(∀j <

i,Hj ∈ (1± ε)Gj) ∧ (Hi /∈ (1± ε)Gi)] = O(1/nd).
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Proof of Theorem 5

They did typo doing this proof at the beginning and because of that their proof is somehow wrong. The
lemma stated in the proof doesn’t hold for weighted graphs and it is used for weighted graphs. We will
write lemma as in [2]. The proof follows same steps with different numbers.

Here is a lemma from paper [2] that we are going to use.

Lemma 3. If the total edge weight of a graph G is k(n− 1) or higher, there exists a k-strong connected
components.

Or we can interpret it in following way.

Corollary 1. If there doesn’t exist a k-strong connected component in graph G, total edge weight of a
graph G is at most k(n− 1).

Proof. Let G be a smallest counterexample with n vertices. Since in particular G is not k-strong con-
nected, it must have a cut C of value less than k. Let us remove the edges of C and consider the two
sides G1 and G2 with n1 and n2 = n − n1 vertices respectively. Sinve G is a smallest counterexample
and G1 is not k-strong connected, G1 must have total edge weight less than k(n1− 1). Similarly, G2 has
edge weight less than k(n2 − 1). Adding back the fewer than k edge of C, we see that the total edge
weight of G is strictly less than k(n1 − 1) + k(n2 − 1) + k = k(n− 1), a contradiction.

We will now prove one helping lemma about total edge weight in H.

Lemma 4. If H ∈ (1± ε)G then total edge weight of H is at most (1 + ε)m.

Proof. Let Cv be a cut ({v}, V −{v}). SinceH ∈ (1±ε)G then it holds V AL(Cv, H) ≤ (1+ε)V AL(Cv, G).
Total edge weight of H is (

∑
v∈V V AL(Cv, H))/2 since each edge is counted for two such cuts. Similarly,

G has (
∑
v∈V V AL(Cv, G))/2 = m edges. Therefore, if H ∈ (1 ± ε)G then total edge weight of H is at

most (1 + ε)m.

We need one more lemma in order to be able to give a proof for our theorem, but let first define
Ek = {e : e ∈ H and ce ≤ k}. Ek is a set of edges that are sampled with ck ≤ k. We want to bound the
total weight of edges in Ek.

Lemma 5.
∑
e∈Ek

wH(e) ≤ (n− 1)(k + k/ρ+ 1)

Proof. Let H ′ be a subgraph of H that consists of edges in Ek. H ′ does not have (k + k/ρ + 1)-
strong connected component. Suppose that it has. Then there exists the first edge e that creates a
(k + k/ρ + 1)-strong connected component in H ′. In that case, e must be in the (k + k/ρ + 1)-strong
connected component. However, since weight e is at most k/ρ, that component is at least (k+ 1)-strong
connected without e. This contradicts that ck ≤ k. Therefore, H ′ does not have any (k+k/ρ+1)-strong
connected component. Now, using corollary 1 we have

∑
e∈Ek

wH(e) ≤ (n− 1)(k + k/ρ+ 1).

Now we can finally finish our proof of theorem.

Proof. Algorithm as output give a graph H which is sparsification of G. Let’s consider the worst case
for number of edges. We know that if an edge has strong connectivity ce then it’s maximum weight in
G is ce/ρ. Since the total weight of H is the same, in worst case we have to sample as many as possible
edges with lower strong connectivity because edge with lower strong connectivity has lower weight so we
can take more of them.

So we have to prefer edges with lower strong connectivity. In that case we will take as many as possible
edges from set E1, then as many as possible from set E2, and so on. Let’s compute what is total weight
difference between Ek and Ek−1.∑
e∈Ek−Ek−1

wH(e) = (n− 1)k(1 + 1/ρ+ 1/k)− (n− 1)(k − 1)(1 + 1/ρ+ 1/(k − 1)) = (n− 1)(1 + 1/ρ)
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As said before, we want to take as many as possible edges from sets Ek with lower k. We know that H
has a total weight at most (1 + ε)m. So we have to see what is largest number km so we can take all Ek
sets. Mathematically

km = (1 + ε)m
(n− 1)(1 + 1/ρ)

Now we know how many of sets we should take and we know what is maximum weight for each set
Ek+1 −Ek. So in order to get largest possible number of edges we have to divide that maximum weight
with smallest possible weight in that group which is k/ρ.

Then, total number of edges in H is

km∑
i=1

(n− 1)(1 + 1/ρ)
i/ρ

= (n− 1)(ρ+ 1)
km∑
i=1

1
i

= O(n(ρ+ 1) log(km))
= O(nρ(logm− logn))
= Õ(n/ε2)

As last theorem in the paper they proved that lower bound space required in order to sparsify every cut
of a graph is Ω(n(logn + log 1

ε )). We won’t prove it here, but they built an example of a graph where
mentioned holds.

Conclusion

What this paper misses to say is time complexity of the algorithm. They mention that it is one pass and
what is space complexity, but they don’t say anything about time complexity.

In the paper they worked with corrently calculated ce, but it is an open problem to calculate edge strong
connectivity. It doesn’t change the proof, but they would have to use lower bound as in paper [2]. In their
solution they would have to use similar algorithm as in paper [2] and that would add time complexity
O(n log2(n)/ε2) in each interation of for loop. Overall time complexity would be O(mn log2(n)/ε2).
There are better algorithm for computing sparsification of a graph, but this one should be used when we
don’t have enough memory for all edges.

To conclude, we presented a one pass semi-streaming algorithm for the adversarially ordered data stream
model which uses Õ(n/ε2) edges to provide ε error bound for cut values with high probability.
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